Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
1.
Sci Rep ; 13(1): 8060, 2023 05 17.
Article in English | MEDLINE | ID: covidwho-2321900

ABSTRACT

Despite all efforts to combat the pandemic of COVID-19, we are still living with high numbers of infected persons, an overburdened health care system, and the lack of an effective and definitive treatment. Understanding the pathophysiology of the disease is crucial for the development of new technologies and therapies for the best clinical management of patients. Since the manipulation of the whole virus requires a structure with an adequate level of biosafety, the development of alternative technologies, such as the synthesis of peptides from viral proteins, is a possible solution to circumvent this problem. In addition, the use and validation of animal models is of extreme importance to screen new drugs and to compress the organism's response to the disease. Peptides derived from recombinant S protein from SARS-CoV-2 were synthesized and validated by in silico, in vitro and in vivo methodologies. Macrophages and neutrophils were challenged with the peptides and the production of inflammatory mediators and activation profile were evaluated. These peptides were also inoculated into the swim bladder of transgenic zebrafish larvae at 6 days post fertilization (dpf) to mimic the inflammatory process triggered by the virus, which was evaluated by confocal microscopy. In addition, toxicity and oxidative stress assays were also developed. In silico and molecular dynamics assays revealed that the peptides bind to the ACE2 receptor stably and interact with receptors and adhesion molecules, such as MHC and TCR, from humans and zebrafish. Macrophages stimulated with one of the peptides showed increased production of NO, TNF-α and CXCL2. Inoculation of the peptides in zebrafish larvae triggered an inflammatory process marked by macrophage recruitment and increased mortality, as well as histopathological changes, similarly to what is observed in individuals with COVID-19. The use of peptides is a valuable alternative for the study of host immune response in the context of COVID-19. The use of zebrafish as an animal model also proved to be appropriate and effective in evaluating the inflammatory process, comparable to humans.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Humans , Zebrafish , Macrophages , Peptides
2.
Int J Mol Sci ; 24(7)2023 Mar 24.
Article in English | MEDLINE | ID: covidwho-2302727

ABSTRACT

Although the exact mechanism of the pathogenesis of coronavirus SARS-CoV-2 (COVID-19) is not fully understood, oxidative stress and the release of pro-inflammatory cytokines have been highlighted as playing a vital role in the pathogenesis of the disease. In this sense, alternative treatments are needed to reduce the level of inflammation caused by COVID-19. Therefore, this study aimed to investigate the potential effect of red photobiomodulation (PBM) as an attractive therapy to downregulate the cytokine storm caused by COVID-19 in a zebrafish model. RT-qPCR analyses and protein-protein interaction prediction among SARS-CoV-2 and Danio rerio proteins showed that recombinant Spike protein (rSpike) was responsible for generating systemic inflammatory processes with significantly increased levels of pro-inflammatory (il1b, il6, tnfa, and nfkbiab), oxidative stress (romo1) and energy metabolism (slc2a1a and coa1) mRNA markers, with a pattern similar to those observed in COVID-19 cases in humans. On the other hand, PBM treatment was able to decrease the mRNA levels of these pro-inflammatory and oxidative stress markers compared with rSpike in various tissues, promoting an anti-inflammatory response. Conversely, PBM promotes cellular and tissue repair of injured tissues and significantly increases the survival rate of rSpike-inoculated individuals. Additionally, metabolomics analysis showed that the most-impacted metabolic pathways between PBM and the rSpike treated groups were related to steroid metabolism, immune system, and lipid metabolism. Together, our findings suggest that the inflammatory process is an incisive feature of COVID-19 and red PBM can be used as a novel therapeutic agent for COVID-19 by regulating the inflammatory response. Nevertheless, the need for more clinical trials remains, and there is a significant gap to overcome before clinical trials can commence.


Subject(s)
COVID-19 , Animals , Humans , Zebrafish/metabolism , SARS-CoV-2/metabolism , Cytokine Release Syndrome , Cytokines/metabolism , RNA, Messenger , Membrane Proteins , Mitochondrial Proteins
3.
Genome Med ; 15(1): 22, 2023 04 05.
Article in English | MEDLINE | ID: covidwho-2271348

ABSTRACT

BACKGROUND: We previously reported that impaired type I IFN activity, due to inborn errors of TLR3- and TLR7-dependent type I interferon (IFN) immunity or to autoantibodies against type I IFN, account for 15-20% of cases of life-threatening COVID-19 in unvaccinated patients. Therefore, the determinants of life-threatening COVID-19 remain to be identified in ~ 80% of cases. METHODS: We report here a genome-wide rare variant burden association analysis in 3269 unvaccinated patients with life-threatening COVID-19, and 1373 unvaccinated SARS-CoV-2-infected individuals without pneumonia. Among the 928 patients tested for autoantibodies against type I IFN, a quarter (234) were positive and were excluded. RESULTS: No gene reached genome-wide significance. Under a recessive model, the most significant gene with at-risk variants was TLR7, with an OR of 27.68 (95%CI 1.5-528.7, P = 1.1 × 10-4) for biochemically loss-of-function (bLOF) variants. We replicated the enrichment in rare predicted LOF (pLOF) variants at 13 influenza susceptibility loci involved in TLR3-dependent type I IFN immunity (OR = 3.70[95%CI 1.3-8.2], P = 2.1 × 10-4). This enrichment was further strengthened by (1) adding the recently reported TYK2 and TLR7 COVID-19 loci, particularly under a recessive model (OR = 19.65[95%CI 2.1-2635.4], P = 3.4 × 10-3), and (2) considering as pLOF branchpoint variants with potentially strong impacts on splicing among the 15 loci (OR = 4.40[9%CI 2.3-8.4], P = 7.7 × 10-8). Finally, the patients with pLOF/bLOF variants at these 15 loci were significantly younger (mean age [SD] = 43.3 [20.3] years) than the other patients (56.0 [17.3] years; P = 1.68 × 10-5). CONCLUSIONS: Rare variants of TLR3- and TLR7-dependent type I IFN immunity genes can underlie life-threatening COVID-19, particularly with recessive inheritance, in patients under 60 years old.


Subject(s)
COVID-19 , Interferon Type I , Humans , Young Adult , Adult , Middle Aged , SARS-CoV-2 , Toll-Like Receptor 3/genetics , Toll-Like Receptor 7 , Autoantibodies
6.
Cells ; 11(5)2022 03 01.
Article in English | MEDLINE | ID: covidwho-1715131

ABSTRACT

Severe COVID-19 patients present a clinical and laboratory overlap with other hyperinflammatory conditions such as hemophagocytic lymphohistiocytosis (HLH). However, the underlying mechanisms of these conditions remain to be explored. Here, we investigated the transcriptome of 1596 individuals, including patients with COVID-19 in comparison to healthy controls, other acute inflammatory states (HLH, multisystem inflammatory syndrome in children [MIS-C], Kawasaki disease [KD]), and different respiratory infections (seasonal coronavirus, influenza, bacterial pneumonia). We observed that COVID-19 and HLH share immunological pathways (cytokine/chemokine signaling and neutrophil-mediated immune responses), including gene signatures that stratify COVID-19 patients admitted to the intensive care unit (ICU) and COVID-19_nonICU patients. Of note, among the common differentially expressed genes (DEG), there is a cluster of neutrophil-associated genes that reflects a generalized hyperinflammatory state since it is also dysregulated in patients with KD and bacterial pneumonia. These genes are dysregulated at the protein level across several COVID-19 studies and form an interconnected network with differentially expressed plasma proteins that point to neutrophil hyperactivation in COVID-19 patients admitted to the intensive care unit. scRNAseq analysis indicated that these genes are specifically upregulated across different leukocyte populations, including lymphocyte subsets and immature neutrophils. Artificial intelligence modeling confirmed the strong association of these genes with COVID-19 severity. Thus, our work indicates putative therapeutic pathways for intervention.


Subject(s)
COVID-19 , Lymphohistiocytosis, Hemophagocytic , Artificial Intelligence , COVID-19/complications , COVID-19/genetics , Child , Humans , Lymphohistiocytosis, Hemophagocytic/complications , Neutrophil Activation , SARS-CoV-2 , Systemic Inflammatory Response Syndrome
7.
Sci Total Environ ; 813: 152345, 2022 Mar 20.
Article in English | MEDLINE | ID: covidwho-1586548

ABSTRACT

Despite the significant increase in the generation of SARS-CoV-2 contaminated domestic and hospital wastewater, little is known about the ecotoxicological effects of the virus or its structural components in freshwater vertebrates. In this context, this study evaluated the deleterious effects caused by SARS-CoV-2 Spike protein on the health of Danio rerio, zebrafish. We demonstrated, for the first time, that zebrafish injected with fragment 16 to 165 (rSpike), which corresponds to the N-terminal portion of the protein, presented mortalities and adverse effects on liver, kidney, ovary and brain tissues. The conserved genetic homology between zebrafish and humans might be one of the reasons for the intense toxic effects followed inflammatory reaction from the immune system of zebrafish to rSpike which provoked damage to organs in a similar pattern as happen in severe cases of COVID-19 in humans, and, resulted in 78,6% of survival rate in female adults during the first seven days. The application of spike protein in zebrafish was highly toxic that is suitable for future studies to gather valuable information about ecotoxicological impacts, as well as vaccine responses and therapeutic approaches in human medicine. Therefore, besides representing an important tool to assess the harmful effects of SARS-CoV-2 in the aquatic environment, we present the zebrafish as an animal model for translational COVID-19 research.


Subject(s)
COVID-19 , Spike Glycoprotein, Coronavirus , Animals , Female , Humans , SARS-CoV-2 , Zebrafish
10.
J Hazard Mater ; 419: 126463, 2021 10 05.
Article in English | MEDLINE | ID: covidwho-1284211

ABSTRACT

The Spike protein (S protein) is a critical component in the infection of the new coronavirus (SARS-CoV-2). The objective of this work was to evaluate whether peptides from S protein could cause negative impact in the aquatic animals. The aquatic toxicity of SARS-CoV-2 Spike protein peptides derivatives has been evaluated in tadpoles (n = 50 tadpoles/5 replicates of 10 animals) from species Physalaemus cuvieri (Leptodactylidae). After synthesis, purification, and characterization of peptides (PSDP2001, PSDP2002, PSDP2003) an aquatic contamination has been simulated with these peptides during 24 h of exposure in two concentrations (100 and 500 ng/mL). The control group ("C") was composed of tadpoles kept in polyethylene containers containing de-chlorinated water. Oxidative stress, antioxidant biomarkers and AChE activity were assessed. In both concentrations, PSPD2002 and PSPD2003 increased catalase and superoxide dismutase antioxidants enzymes activities, as well as oxidative stress (nitrite levels, hydrogen peroxide and reactive oxygen species). All three peptides also increased acetylcholinesterase activity in the highest concentration. These peptides showed molecular interactions in silico with acetylcholinesterase and antioxidant enzymes. Aquatic particle contamination of SARS-CoV-2 has cholinesterasic effect in P. cuvieri tadpoles. These findings indicate that the COVID-19 can constitute environmental impact or biological damage potential.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Anura , Humans , Larva , Spike Glycoprotein, Coronavirus
11.
J Clin Immunol ; 41(7): 1479-1489, 2021 10.
Article in English | MEDLINE | ID: covidwho-1281310

ABSTRACT

PURPOSE: There is still scarce data on SARS-CoV-2 infection in patients with Inborn Errors of Immunity (IEI) and many unresolved questions. We aimed to describe the clinical outcome of SARS-CoV-2 infection in Brazilian IEI patients and identify factors influencing the infection. METHODS: We did a cross-sectional, multicenter study that included patients of any age affected by IEI and SARS-CoV-2 infection. The variables studied were sex, age, type of IEI, comorbidities (number and type), treatment in use for IEI, clinical manifestations and severity of SARS-CoV-2 infection. RESULTS: 121 patients were included: 55.4% female, ages from six months to 74 yo (median age = 25.1 yo). Most patients had predominantly antibody deficiency (n = 53). The infection was mostly asymptomatic (n = 21) and mild (n = 66), and one child had multisystem inflammatory syndrome (MIS-C). We could not observe sex-related susceptibility, and there was a weak correlation between age and severity of infection. The number of comorbidities was higher in severe cases, particularly bronchiectasis and cardiopathy. There were no severe cases in hereditary angioedema patients. Six patients aged 2 to 74 years died, three of them with antibody deficiency. CONCLUSION: The outcome was mild in most patients, but the Case Fatality Ratio was higher than in the general population. However, the type of IEI was not a determining factor for severity, except for complement deficiencies linked to milder COVID-19. The severity of SARS-CoV-2 infection seems to be more related to older age, a higher number of comorbidities and type of comorbidities (bronchiectasis and cardiopathy).


Subject(s)
COVID-19/diagnosis , Primary Immunodeficiency Diseases/diagnosis , SARS-CoV-2/physiology , Systemic Inflammatory Response Syndrome/diagnosis , Adult , Asymptomatic Diseases , Brazil , COVID-19/mortality , Cross-Sectional Studies , Disease Progression , Female , Humans , Male , Middle Aged , Primary Immunodeficiency Diseases/mortality , Severity of Illness Index , Survival Analysis , Systemic Inflammatory Response Syndrome/mortality , Young Adult
12.
JCI Insight ; 6(10)2021 05 24.
Article in English | MEDLINE | ID: covidwho-1241077

ABSTRACT

The fact that the COVID-19 fatality rate varies by sex and age is poorly understood. Notably, the outcome of SARS-CoV-2 infections mostly depends on the control of cytokine storm and the increasingly recognized pathological role of uncontrolled neutrophil activation. Here, we used an integrative approach with publicly available RNA-Seq data sets of nasopharyngeal swabs and peripheral blood leukocytes from patients with SARS-CoV-2, according to sex and age. Female and young patients infected by SARS-CoV-2 exhibited a larger number of differentially expressed genes (DEGs) compared with male and elderly patients, indicating a stronger immune modulation. Among them, we found an association between upregulated cytokine/chemokine- and downregulated neutrophil-related DEGs. This was correlated with a closer relationship between female and young subjects, while the relationship between male and elderly patients was closer still. The association between these cytokine/chemokines and neutrophil DEGs is marked by a strongly correlated interferome network. Here, female patients exhibited reduced transcriptional levels of key proinflammatory/neutrophil-related genes, such as CXCL8 receptors (CXCR1 and CXCR2), IL-1ß, S100A9, ITGAM, and DBNL, compared with male patients. These genes are well known to be protective against inflammatory damage. Therefore, our work suggests specific immune-regulatory pathways associated with sex and age of patients infected with SARS-CoV-2 and provides a possible association between inverse modulation of cytokine/chemokine and neutrophil transcriptional signatures.


Subject(s)
COVID-19/genetics , Cytokines/genetics , Gene Regulatory Networks , Adult , Age Factors , Aged , COVID-19/epidemiology , COVID-19/immunology , Cytokines/immunology , Female , Humans , Male , Middle Aged , Neutrophils/immunology , Neutrophils/metabolism , SARS-CoV-2/immunology , SARS-CoV-2/isolation & purification , Sex Factors , Transcriptome
13.
Int J Infect Dis ; 117: 130-136, 2022 Apr.
Article in English | MEDLINE | ID: covidwho-1237715

ABSTRACT

INTRODUCTION: Latin America accounts for one-quarter of global COVID-19 cases and one-third of deaths. Inequalities in the region lead to barriers to the best use of diagnostic tests during the pandemic. There is a need for simplified guidelines that consider the region's limited health resources, international guidelines, medical literature, and local expertise. METHODS: Using a modified Delphi method, 9 experts from Latin American countries developed a simplified algorithm for COVID-19 diagnosis on the basis of their answers to 24 questions related to diagnostic settings, and discussion of the literature and their experiences. RESULTS: The algorithm considers 3 timeframes (≤7 days, 8-13 days, and ≥14 days) and presents diagnostic options for each. SARS-CoV-2 real- time reverse transcription-polymerase chain reaction is the test of choice from day 1 to 14 after symptom onset or close contact, although antigen testing may be used in specific circumstances, from day 5 to 7. Antibody assays may be used for confirmation, usually after day 14; however, if clinical suspicion is very high, but other tests are negative, these assays may be used as an adjunct to decision-making from day 8 to 13. CONCLUSION: The proposed algorithm aims to support COVID-19 diagnosis decision-making in Latin America.


Subject(s)
COVID-19 , SARS-CoV-2 , Algorithms , COVID-19/diagnosis , COVID-19 Testing , Consensus , Humans , Latin America/epidemiology
14.
Adv Exp Med Biol ; 1318: 911-921, 2021.
Article in English | MEDLINE | ID: covidwho-1222754

ABSTRACT

In the COVID-19 era, while we are encouraged to be physically far away from each other, social and scientific networking is needed more than ever. The dire consequences of social distancing can be diminished by social networking. Social media, a quintessential component of social networking, facilitates the dissemination of reliable information and fighting against misinformation by health authorities. Distance learning, telemedicine, and telehealth are among the most prominent applications of networking during this pandemic. Additionally, the COVID-19 pandemic highlights the importance of collaborative scientific efforts. In this chapter, we summarize the advantages of harnessing both social and scientific networking in minimizing the harms of this pandemic. We also discuss the extra collaborative measures we can take in our fight against COVID-19, particularly in the scientific field.


Subject(s)
COVID-19 , Social Media , Humans , Pandemics , Physical Distancing , SARS-CoV-2 , Socialization
15.
Genet Mol Biol ; 44(1 Suppl 1): e20200302, 2021.
Article in English | MEDLINE | ID: covidwho-1112531

ABSTRACT

COVID-19 comprises clinical outcomes of SARS-CoV-2 infection and is highly heterogeneous, ranging from asymptomatic individuals to deceased young adults without comorbidities. There is growing evidence that host genetics play an important role in COVID-19 severity, including inborn errors of immunity, age-related inflammation and immunosenescence. Here we present a brief review on the known order of events from infection to severe system-wide disturbance due to COVID-19 and summarize potential candidate genes and pathways. Finally, we propose a strategy of subject's ascertainment based on phenotypic extremes to take part in genomic studies and elucidate intrinsic risk factors involved in COVID-19 severe outcomes.

16.
J Pediatr (Rio J) ; 97 Suppl 1: S49-S58, 2021.
Article in English | MEDLINE | ID: covidwho-939085

ABSTRACT

OBJECTIVE: A review article was carried out, addressing the clinical and epidemiological characteristics of immune system deficiencies, which are associated with or predispose to recurrent infectious processes, autoimmune diseases, auto inflammatory diseases, or neoplasms, and which are classified as inborn errors of immunity (IEI) and secondary immunodeficiencies (SID). Emphasis was placed on the classification of the main signs and symptoms for each organ and system, which will serve as warning signs, to guide the pediatrician in the investigation of the main IEI. In addition, the main secondary changes in the immune system triggered by infections (with emphasis on COVID-19), drugs, chronic diseases, metabolic and nutritional disorders were identified. SOURCES OF DATA: This review included articles published in the last five years and that were identified in the MEDLINE platform (PubMed). SUMMARY OF FINDINGS: The recurrence of infectious processes, associated with the severity of the condition and/or unusual profile of the infectious agent, always related to the age range of symptom onset, are the most important findings for suspected diagnosis. CONCLUSIONS: Considering this scenario, immunity disorders should be part of the investigation carried out by the general pediatrician, whether they are the innate errors of immunity (primary immunodeficiencies) or secondary immunodeficiencies, so that the diagnosis is attained as early as possible and therapeutic measures are implemented, reducing the morbidity and mortality of these patients.


Subject(s)
COVID-19 , Immunologic Deficiency Syndromes , Humans , Immunologic Deficiency Syndromes/diagnosis , Recurrence , SARS-CoV-2
17.
Int J Infect Dis ; 103: 260-267, 2021 Feb.
Article in English | MEDLINE | ID: covidwho-938980

ABSTRACT

The COVID-19 pandemic has caused an unprecedented public health, social, and economic crisis. Improving understanding on available tests for detecting COVID-19 is critical for effective management of the pandemic. We proposed that a multidisciplinary expert panel can establish recommendations on ideal use of diagnostic tools, with a focus on RT-PCR and serological high-affinity antibodies (both IgM and IgG) tests for the Latin America region. STUDY DESIGN: A collaborative multidisciplinary panel of 5 recognized experts in Latin America (an infectious disease specialist, three pathologists, and an immunologist) was convened and supported by Roche Diagnostics to develop standard guidelines and an evidence-based document of best practices on the use of diagnostic tools for COVID-19. RESULTS: The authors reached consensus on the applicability of diagnostic tools to provide testing algorithms for the use of RT-PCR and serological high-affinity antibodies (both IgM and IgG) tests in three settings: 1) For asymptomatic subjects exposed to a SARS-CoV-2 infected person; 2) For epidemiological purposes and; 3) For symptomatic subjects. CONCLUSION: The serological high-affinity SARS-CoV-2 antibodies (both IgM and IgG) tests play a key role in COVID-19 diagnosis. These tests can be applied for suspected false-negative RT-PCR results and for individual determination of response. The use of these tests can also contribute greatly to public health strategies, such as population screening and supporting vaccination planning. Serological status for high-affinity antibodies (both IgM and IgG) should be performed ideally 21 days after potential infectious contact, given that the majority of exposed individuals will have seroconverted.


Subject(s)
Antibodies, Viral/blood , COVID-19 Testing/methods , COVID-19/diagnosis , Reverse Transcriptase Polymerase Chain Reaction/methods , SARS-CoV-2 , Algorithms , Consensus , Humans , SARS-CoV-2/immunology , SARS-CoV-2/isolation & purification
18.
Am J Trop Med Hyg ; 102(6): 1181-1183, 2020 06.
Article in English | MEDLINE | ID: covidwho-596857

ABSTRACT

Novel coronavirus disease (COVID-19), named a pandemic by the WHO, is the current global health crisis. National and international collaboration are indispensable for combating COVID-19 and other similar potential outbreaks. International efforts to tackle this complex problem have led to remarkable scientific advances. Yet, as a global society, we can and must take additional measures to fight this pandemic. Undoubtedly, our approach toward COVID-19 was not perfect, and testing has not been deployed fast enough to arrest the epidemic early on. It is critical that we revise our approaches to be more prepared for pandemics as a united body by promoting global cooperation and commitment.


Subject(s)
Betacoronavirus/pathogenicity , Civil Defense/organization & administration , Coronavirus Infections/epidemiology , International Cooperation/legislation & jurisprudence , Pandemics , Pneumonia, Viral/epidemiology , Antiviral Agents/chemical synthesis , Antiviral Agents/therapeutic use , Asia/epidemiology , Betacoronavirus/drug effects , COVID-19 , COVID-19 Testing , COVID-19 Vaccines , Clinical Laboratory Techniques/standards , Clinical Laboratory Techniques/statistics & numerical data , Coronavirus Infections/diagnosis , Coronavirus Infections/drug therapy , Coronavirus Infections/prevention & control , Europe/epidemiology , Humans , Middle East/epidemiology , Pandemics/prevention & control , Pneumonia, Viral/diagnosis , Pneumonia, Viral/drug therapy , Pneumonia, Viral/prevention & control , SARS-CoV-2 , Viral Vaccines/biosynthesis , Viral Vaccines/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL